Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Viruses ; 14(3)2022 03 16.
Article in English | MEDLINE | ID: covidwho-1810308

ABSTRACT

Enhancing treatment uptake for hepatitis C to achieve the elimination goals set by the World Health Organization could be achieved by reducing the treatment duration. The aim of this study was to compare the sustained virological response at week 12 (SVR12) after four weeks of glecaprevir/pibrentasvir (GLE/PIB) + ribavirin compared to eight weeks of GLE/PIB and to estimate predictors for SVR12 with four weeks of treatment through a multicenter open label randomized controlled trial. Patients were randomized 2:1 (4 weeks:8 weeks) and stratified by genotype 3 and were treatment naïve of all genotypes and without significant liver fibrosis. A total of 27 patients were analyzed for predictors for SVR12, including 15 from the first pilot phase of the study. In the 'modified intention to treat' group, 100% (7/7) achieved cure after eight weeks and for patients treated for four weeks the SVR12 was 58.3% (7/12). However, patients with a baseline viral load <2 mill IU/mL had 93% SVR12. The study closed prematurely due to the low number of included patients due to the COVID-19 pandemic. Our results suggest that viral load should be taken into account when considering trials of short course treatment.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Aminoisobutyric Acids , Antiviral Agents/therapeutic use , Benzimidazoles , Cyclopropanes , Hepatitis C, Chronic/drug therapy , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Pandemics , Proline/analogs & derivatives , Pyrrolidines , Quinoxalines , Ribavirin/therapeutic use , Sulfonamides
2.
Eur J Med Chem ; 246: 114998, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2149665

ABSTRACT

Sirt6 activation has emerged as a promising drug target for the treatment of various human diseases, while only limited Sirt6 activators have been reported. Herein, a series of novel pyrrolo[1,2-a]quinoxaline-based derivatives have been identified as potent and selective Sirt6 activators with low cytotoxicity. Sirt6-knockdown findings have validated the on-target effects of this class of Sirt6 activators. Docking studies indicate the protonated nitrogen on the side chain of 38 forms π-cation interactions with Trp188, further stabilizing it into this extended binding pocket. New compounds 35, 36, 38, 46, 47, and 50 strongly repressed LPS-induced proinflammatory cytokine/chemokine production, while 38 also significantly suppressed SARS-CoV-2 infection with an EC50 value of 9.3 µM. Moreover, compound 36 significantly inhibited the colony formation of cancer cells. These new molecules may serve as useful pharmacological tools or potential therapeutics against cancer, inflammation, and infectious diseases.


Subject(s)
COVID-19 , Sirtuins , Humans , Sirtuins/metabolism , Quinoxalines/pharmacology , Quinoxalines/chemistry , SARS-CoV-2/metabolism
3.
Bioorg Chem ; 129: 106195, 2022 12.
Article in English | MEDLINE | ID: covidwho-2068728

ABSTRACT

The importance of the quinoxaline framework is exemplified by its presence in the well-known drugs such as varenicline, brimonidine, quinacillin, etc. In the past few years, preparation of a variety of organic compounds containing the quinoxaline framework has been reported by several research groups. The chloroquinoxalines were successfully used as substrates in many of these synthetic approaches due to their easy availability along with the reactivity especially towards a diverse range of metal and transition metal-catalyzed transformations including Sonogashira, Suzuki, Heck type of cross-coupling reactions. The transition metals e.g., Pd, Cu, Fe and Nb catalysts played a key role in these transformations for the construction of various CX (e.g., CC, CN, CO, CS, CP, CSe, etc) bonds. These approaches can be classified based on the catalyst employed, type of the reaction performed and nature of CX bond formation during the reaction. Several of these resultant quinoxaline derivatives have shown diverse biological activities which include apoptosis inducing activities, SIRT1 inhibition, inhibition of luciferace enzyme, antibacterial and antifungal activities, cytotoxicity towards cancer cells, inhibition of PDE4 (phosphodiesterase 4), potential uses against COVID-19, etc. Notably, a review article covering the literature based on transition metal-catalyzed reactions of chloroquinoxalines at the same time summarizing the relevant biological activities of resultant products is rather uncommon. Therefore, an attempt is made in the current review article to summarize (i) the recent advances noted in the transition metal-catalyzed reactions of chloroquinoxalines (ii) with the relevant mechanistic discussions (iii) along with the in vitro, and in silico biological studies (wherever reported) (iv) including Structure-Activity Relationship (SAR) within the particular series of the products reported between 2010 and 2022.


Subject(s)
Pharmaceutical Preparations , Quinoxalines , Transition Elements , Humans , Catalysis , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Quinoxalines/pharmacology , Transition Elements/chemical synthesis , Transition Elements/pharmacology , Structure-Activity Relationship , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry
5.
Biochem Biophys Res Commun ; 571: 26-31, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-1312941

ABSTRACT

The pandemic of SARS-CoV-2 has necessitated expedited research efforts towards finding potential antiviral targets and drug development measures. While new drug discovery is time consuming, drug repurposing has been a promising area for elaborate virtual screening and identification of existing FDA approved drugs that could possibly be used for targeting against functions of various proteins of SARS-CoV-2 virus. RNA dependent RNA polymerase (RdRp) is an important enzyme for the virus that mediates replication of the viral RNA. Inhibition of RdRp could inhibit viral RNA replication and thus new virus particle production. Here, we screened non-nucleoside antivirals and found three out of them to be strongest in binding to RdRp out of which two retained binding even using molecular dynamic simulations. We propose these two drugs as potential RdRp inhibitors which need further in-depth testing.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Amides/pharmacology , Antiviral Agents/chemistry , Benzimidazoles/pharmacology , COVID-19/virology , Carbamates/pharmacology , Catalytic Domain , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cyclopropanes/pharmacology , Drug Evaluation, Preclinical , Drug Repositioning , Fluorenes/pharmacology , Humans , Lactams, Macrocyclic/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Proline/analogs & derivatives , Proline/pharmacology , Protein Conformation , Quinoxalines/pharmacology , Sulfonamides/pharmacology
6.
Sci Rep ; 11(1): 10290, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1228274

ABSTRACT

As the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic engulfs millions worldwide, the quest for vaccines or drugs against the virus continues. The helicase protein of SARS-CoV-2 represents an attractive target for drug discovery since inhibition of helicase activity can suppress viral replication. Using in silico approaches, we have identified drugs that interact with SARS-CoV-2 helicase based on the presence of amino acid arrangements matching binding sites of drugs in previously annotated protein structures. The drugs exhibiting an RMSD of ≤ 3.0 Å were further analyzed using molecular docking, molecular dynamics (MD) simulation, and post-MD analyses. Using these approaches, we found 12 drugs that showed strong interactions with SARS-CoV-2 helicase amino acids. The analyses were performed using the recently available SARS-CoV-2 helicase structure (PDB ID: 5RL6). Based on the MM-GBSA approach, out of the 12 drugs, two drugs, namely posaconazole and grazoprevir, showed the most favorable binding energy, - 54.8 and - 49.1 kcal/mol, respectively. Furthermore, of the amino acids found conserved among all human coronaviruses, 10/11 and 10/12 were targeted by, respectively, grazoprevir and posaconazole. These residues are part of the crucial DEAD-like helicase C and DEXXQc_Upf1-like/ DEAD-like helicase domains. Strong interactions of posaconazole and grazoprevir with conserved amino acids indicate that the drugs can be potent against SARS-CoV-2. Since the amino acids are conserved among the human coronaviruses, the virus is unlikely to develop resistance mutations against these drugs. Since these drugs are already in use, they may be immediately repurposed for SARS-CoV-2 therapy.


Subject(s)
Amides/pharmacology , Carbamates/pharmacology , Cyclopropanes/pharmacology , Drug Repositioning , Enzyme Inhibitors/pharmacology , Quinoxalines/pharmacology , RNA Helicases/antagonists & inhibitors , SARS-CoV-2/enzymology , Sulfonamides/pharmacology , Triazoles/pharmacology , Antiviral Agents/pharmacology , Drug Repositioning/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Domains/drug effects , RNA Helicases/chemistry , RNA Helicases/metabolism , SARS-CoV-2/drug effects , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Viral Proteins/metabolism , COVID-19 Drug Treatment
7.
Sci Rep ; 11(1): 7307, 2021 03 31.
Article in English | MEDLINE | ID: covidwho-1164913

ABSTRACT

Outcomes of various clinical studies for the coronavirus disease 2019 (COVID-19) treatment indicated that the drug acts via inhibition of multiple pathways (targets) is likely to be more successful and promising. Keeping this hypothesis intact, the present study describes for the first-time, Grazoprevir, an FDA approved anti-viral drug primarily approved for Hepatitis C Virus (HCV), mediated multiple pathway control via synergistic inhibition of viral entry targeting host cell Angiotensin-Converting Enzyme 2 (ACE-2)/transmembrane serine protease 2 (TMPRSS2) and viral replication targeting RNA-dependent RNA polymerase (RdRP). Molecular modeling followed by in-depth structural analysis clearly demonstrated that Grazoprevir interacts with the key residues of these targets. Futher, Molecular Dynamics (MD) simulations showed stability and burial of key residues after the complex formation. Finally, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis identified the governing force of drug-receptor interactions and stability. Thus, we believe that Grazoprevir could be an effective therapeutics for the treatment of the COVID-19 pandemic with a promise of unlikely drug resistance owing to multiple inhibitions of eukaryotic and viral proteins, thus warrants further clinical studies.


Subject(s)
Amides/metabolism , Amides/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Carbamates/metabolism , Carbamates/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cyclopropanes/metabolism , Cyclopropanes/pharmacology , Quinoxalines/metabolism , Quinoxalines/pharmacology , Sulfonamides/metabolism , Sulfonamides/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/metabolism , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Drug Repositioning , Humans , Models, Molecular , Molecular Dynamics Simulation , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Virus Internalization/drug effects
8.
Molecules ; 26(4)2021 Feb 18.
Article in English | MEDLINE | ID: covidwho-1121652

ABSTRACT

Quinoxalines, a class of N-heterocyclic compounds, are important biological agents, and a significant amount of research activity has been directed towards this class. They have several prominent pharmacological effects like antifungal, antibacterial, antiviral, and antimicrobial. Quinoxaline derivatives have diverse therapeutic uses and have become the crucial component in drugs used to treat cancerous cells, AIDS, plant viruses, schizophrenia, certifying them a great future in medicinal chemistry. Due to the current pandemic situation caused by SARS-COVID 19, it has become essential to synthesize drugs to combat deadly pathogens (bacteria, fungi, viruses) for now and near future. Since quinoxalines is an essential moiety to treat infectious diseases, numerous synthetic routes have been developed by researchers, with a prime focus on green chemistry and cost-effective methods. This review paper highlights the various synthetic routes to prepare quinoxaline and its derivatives, covering the literature for the last two decades. A total of 31 schemes have been explained using the green chemistry approach, cost-effective methods, and quinoxaline derivatives' therapeutic uses.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Pandemics , Quinoxalines , SARS-CoV-2/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/epidemiology , Humans , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Quinoxalines/therapeutic use
9.
Biosci Rep ; 40(6)2020 06 26.
Article in English | MEDLINE | ID: covidwho-1099357

ABSTRACT

Due to the lack of efficient therapeutic options and clinical trial limitations, the FDA-approved drugs can be a good choice to handle Coronavirus disease (COVID-19). Many reports have enough evidence for the use of FDA-approved drugs which have inhibitory potential against target proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we utilized a structure-based drug design approach to find possible drug candidates from the existing pool of FDA-approved drugs and checked their effectiveness against the SARS-CoV-2. We performed virtual screening of the FDA-approved drugs against the main protease (Mpro) of SARS-CoV-2, an essential enzyme, and a potential drug target. Using well-defined computational methods, we identified Glecaprevir and Maraviroc (MVC) as the best inhibitors of SARS-CoV-2 Mpro. Both drugs bind to the substrate-binding pocket of SARS-CoV-2 Mpro and form a significant number of non-covalent interactions. Glecaprevir and MVC bind to the conserved residues of substrate-binding pocket of SARS-CoV-2 Mpro. This work provides sufficient evidence for the use of Glecaprevir and MVC for the therapeutic management of COVID-19 after experimental validation and clinical manifestations.


Subject(s)
Betacoronavirus/enzymology , Maraviroc/pharmacology , Protease Inhibitors/pharmacology , Quinoxalines/pharmacology , Sulfonamides/pharmacology , Aminoisobutyric Acids , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Computer Simulation , Cyclopropanes , Drug Evaluation, Preclinical/methods , Lactams, Macrocyclic , Leucine/analogs & derivatives , Maraviroc/chemistry , Maraviroc/metabolism , Molecular Structure , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Quinoxalines/chemistry , Quinoxalines/metabolism , SARS-CoV-2 , Sulfonamides/chemistry , Sulfonamides/metabolism
10.
Infect Genet Evol ; 84: 104451, 2020 10.
Article in English | MEDLINE | ID: covidwho-630854

ABSTRACT

WHO has declared the outbreak of COVID-19 as a public health emergency of international concern. The ever-growing new cases have called for an urgent emergency for specific anti-COVID-19 drugs. Three structural proteins (Membrane, Envelope and Nucleocapsid protein) play an essential role in the assembly and formation of the infectious virion particles. Thus, the present study was designed to identify potential drug candidates from the unique collection of 548 anti-viral compounds (natural and synthetic anti-viral), which target SARS-CoV-2 structural proteins. High-end molecular docking analysis was performed to characterize the binding affinity of the selected drugs-the ligand, with the SARS-CoV-2 structural proteins, while high-level Simulation studies analyzed the stability of drug-protein interactions. The present study identified rutin, a bioflavonoid and the antibiotic, doxycycline, as the most potent inhibitor of SARS-CoV-2 envelope protein. Caffeic acid and ferulic acid were found to inhibit SARS-CoV-2 membrane protein while the anti-viral agent's simeprevir and grazoprevir showed a high binding affinity for nucleocapsid protein. All these compounds not only showed excellent pharmacokinetic properties, absorption, metabolism, minimal toxicity and bioavailability but were also remain stabilized at the active site of proteins during the MD simulation. Thus, the identified lead compounds may act as potential molecules for the development of effective drugs against SARS-CoV-2 by inhibiting the envelope formation, virion assembly and viral pathogenesis.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Nucleocapsid Proteins/chemistry , Viral Envelope Proteins/chemistry , Viral Matrix Proteins/chemistry , Virion/drug effects , Amides , Amino Acid Sequence , Antiviral Agents/chemistry , Betacoronavirus/genetics , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Carbamates , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Cyclopropanes , Doxycycline/chemistry , Doxycycline/pharmacology , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleocapsid Proteins/antagonists & inhibitors , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quinoxalines/chemistry , Quinoxalines/pharmacology , Rutin/chemistry , Rutin/pharmacology , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Simeprevir/chemistry , Simeprevir/pharmacology , Sulfonamides , Thermodynamics , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virion/genetics
11.
Asian Pac J Allergy Immunol ; 38(2): 69-77, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-610528

ABSTRACT

During the initial pandemic wave of COVID-19, apart from common presenting symptoms (cough, fever, and fatigue), many countries have reported a sudden increase in the number of smell and taste dysfunction patients. Smell dysfunction has been reported in other viral infections (parainfluenza, rhinovirus, SARS, and others), but the incidence is much lower than SARS-CoV-2 infection. The pathophysiology of post-infectious olfactory loss was hypothesized that viruses may produce an inflammatory reaction of the nasal mucosa or damage the olfactory neuroepithelium directly. However, loss of smell could be presented in COVID-19 patients without other rhinologic symptoms or significant nasal inflammation. This review aims to provide a brief overview of recent evidence for epidemiology, pathological mechanisms for the smell, and taste dysfunction in SARS-CoV-2 infected patients. Furthermore, prognosis and treatments are reviewed with scanty evidence. We also discuss the possibility of using "smell and taste loss" as a screening tool for COVID-19 and treatment options in the post-SARS-CoV-2 infectious olfactory loss.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Olfaction Disorders/epidemiology , Olfaction Disorders/physiopathology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Adrenal Cortex Hormones/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Humans , Incidence , Olfaction Disorders/diagnosis , Olfaction Disorders/drug therapy , Olfactory Mucosa/drug effects , Olfactory Mucosa/physiopathology , Olfactory Mucosa/virology , Olfactory Perception/drug effects , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Practice Guidelines as Topic , Prognosis , Quinoxalines/therapeutic use , Remission, Spontaneous , SARS-CoV-2 , Taste Perception/drug effects , Vitamin A/therapeutic use
12.
Molecules ; 25(12)2020 Jun 16.
Article in English | MEDLINE | ID: covidwho-606990

ABSTRACT

BACKGROUND: In recent decades, several viruses have jumped from animals to humans, triggering sizable outbreaks. The current unprecedent outbreak SARS-COV-2 is prompting a search for new cost-effective therapies to combat this deadly pathogen. Suitably functionalized polysubstituted quinoxalines show very interesting biological properties (antiviral, anticancer, and antileishmanial), ensuring them a bright future in medicinal chemistry. OBJECTIVES: Focusing on the promising development of new quinoxaline derivatives as antiviral drugs, this review forms part of our program on the anti-infectious activity of quinoxaline derivatives. METHODS: Study compiles and discusses recently published studies concerning the therapeutic potential of the antiviral activity of quinoxaline derivatives, covering the literature between 2010 and 2020. RESULTS: A final total of 20 studies included in this review. CONCLUSIONS: This review points to a growing interest in the development of compounds bearing a quinoxaline moiety for antiviral treatment. This promising moiety with different molecular targets warrants further investigation, which may well yield even more encouraging results regarding this scaffold.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Quinoxalines/therapeutic use , COVID-19 , DNA Viruses/drug effects , Humans , Pandemics , Quinoxalines/chemistry , SARS-CoV-2 , Structure-Activity Relationship
13.
Comput Biol Med ; 122: 103848, 2020 07.
Article in English | MEDLINE | ID: covidwho-591551

ABSTRACT

The recent outbreak of coronavirus disease-19 (COVID-19) continues to drastically affect healthcare throughout the world. To date, no approved treatment regimen or vaccine is available to effectively attenuate or prevent the infection. Therefore, collective and multidisciplinary efforts are needed to identify new therapeutics or to explore effectiveness of existing drugs and drug-like small molecules against SARS-CoV-2 for lead identification and repurposing prospects. This study addresses the identification of small molecules that specifically bind to any of the three essential proteins (RdRp, 3CL-protease and helicase) of SARS-CoV-2. By applying computational approaches we screened a library of 4574 compounds also containing FDA-approved drugs against these viral proteins. Shortlisted hits from initial screening were subjected to iterative docking with the respective proteins. Ranking score on the basis of binding energy, clustering score, shape complementarity and functional significance of the binding pocket was applied to identify the binding compounds. Finally, to minimize chances of false positives, we performed docking of the identified molecules with 100 irrelevant proteins of diverse classes thereby ruling out the non-specific binding. Three FDA-approved drugs showed binding to 3CL-protease either at the catalytic pocket or at an allosteric site related to functionally important dimer formation. A drug-like molecule showed binding to RdRp in its catalytic pocket blocking the key catalytic residues. Two other drug-like molecules showed specific interactions with helicase at a key domain involved in catalysis. This study provides lead drugs or drug-like molecules for further in vitro and clinical investigation for drug repurposing and new drug development prospects.


Subject(s)
Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Drug Repositioning , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Amides , COVID-19 , Carbamates , Catalytic Domain , Computer Simulation , Cyclopropanes , Dimerization , Drug Design , Humans , Molecular Docking Simulation , Pandemics , Protease Inhibitors/chemistry , Quinoxalines/pharmacology , Rimantadine/pharmacology , SARS-CoV-2 , Sulfonamides , Viral Proteins/chemistry , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL